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Abstract
We study stationary electron flow through a three-terminal quantum ring and describe effects
due to deflection of electron trajectories by classical magnetic forces. We demonstrate that
generally at high magnetic field (B) the current is guided by magnetic forces to follow a
classical path, which for B > 0 leads via the left arm of the ring to the left output terminal. The
transport to the left output terminal is blocked for narrow windows of magnetic field for which
the interference within the ring leads to formation of wavefunctions that are only weakly
coupled to the output channel wavefunctions. These interference conditions are accompanied
by injection of the current to the right arm of the ring and by appearance of sharp peaks of the
transfer probability to the right output terminal. We find that these peaks at high magnetic field
are attenuated by thermal widening of the transport window. We also demonstrate that the
interference conditions that lead to their appearance vanish when elastic scattering within the
ring is present. The clear effect of magnetic forces on the transfer probabilities disappears along
with Aharonov–Bohm oscillations in a chaotic transport regime that is found for rings whose
width is larger than the width of the channels.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phase-coherent electron transport in mesoscopic [1–3] and
nanoscale [4–8] rings results in appearance of Aharonov–
Bohm [9] conductance oscillations in external magnetic
field. These conductance oscillations are extensively studied
in the context of scanning gate spectroscopy [10], spin–
orbit coupling for both electrons [11, 12] and holes [13],
Aharonov–Bohm interferometry [14] including electron self-
interference [15], violation of Onsager symmetry [16], and
magnetic forces [17–20].

The deflection of electron trajectories by magnetic forces
in two-terminal quantum rings was previously studied by time-
dependent wavepacket simulations [17], which indicated that
in the presence of external perpendicular magnetic field the
electron packet is preferentially injected into one of the arms
of the ring, which reduces the Aharonov–Bohm interference
of electron waves meeting near the exit to the output lead.
A time-dependent simulation was also used to describe the
transport through a three-terminal quantum ring [18], which

demonstrated that the Lorentz force—besides the reduction of
the Aharonov–Bohm oscillations at high field—results in a
distinct imbalance of the wavepacket transfer probabilities to
the two output leads. Such an imbalance of conductance of
two output leads was indeed found in a recent experiment [20].

A three-terminal quantum ring is a basic element [21]
for construction of ring arrays that are proposed for
implementation of quantum logic operations [22, 23] using
spin–orbit interactions. In these structures [21–23] the
direction of the charge current is determined by the electron
spin orientation. Magnetic forces [20] can provide a mean of
external control of the current flow.

The time-dependent simulations as previously performed
for three-terminal rings [18, 19] are based on a relatively
straightforward procedure that indicates in a clear way
the electron trajectories across the nanostructure. The
charge transfer is a time-dependent process only in selected
experiments; cf. the single-electron injection into the quantum
ring [15] realized according to the single-electron pump
technique based on the Coulomb blockade [24]. The standard
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experiments measure the current due to the stationary electron
flow at the Fermi level, which is therefore of a more
basic interest than the wavepacket dynamics. With the
time-dependent approach one can in principle approach the
monoenergetic time-independent limit, increasing the spatial
spread of the wavepacket in the initial condition, but the latter
is limited by the necessarily finite size of the computational
box.

The purpose of the present paper is to describe the effect of
magnetic forces on electron transport through a three-terminal
ring in Hamiltonian eigenstates. We find that at high magnetic
field the electron flow follows the path determined by the
Lorentz force—one of the arms of the ring is selected by the
current which leaves the ring to the nearest output channel.
However, exceptions to this rule are found for resonant
interference conditions that block the transport to the output
channel that is preferred by magnetic forces. This blockade
is accompanied by anomalous (nonclassical) injection of the
current to the ring and by appearance of peaks of the transfer
probability to the other output channel. We study the thermal
stability of this anomalous current injection, the influence of
the elastic scatterers for the resonant interference and effects
of magnetic forces in the chaotic transport regime. We also
study oscillations of the current circulation, which turn out to
be more thermally stable than the oscillations of the transfer
probabilities. Orientation of the currents circulating inside
the ring determines the sign of the magnetic dipole moment
that they generate. The magnetization oscillations due to the
Aharonov–Bohm effect were so far measured for mesoscopic
open quantum rings [25] and for large ensembles of closed
nanorings [26].

2. Theory

2.1. Model system

The geometry of the studied system is depicted in figure 1.
The inner and outer radii of the ring are 88 nm and 154 nm,
respectively. The channels are assumed to be 68 nm wide. We
treat the straight channel connected to the ring from below as
the input terminal. The contacts to the input and the output
channels are spaced by 120◦ angles. The output channels are
bent twice under the angle of 30◦ to acquire vertical orientation
at the end of the computational box, which allows for a
uniform treatment of incoming and outgoing wavefunctions
and currents (see below).

We adopt a two-dimensional model and assume that
the magnetic field is oriented perpendicular to the plane of
confinement. We consider the electron Hamiltonian in the form

H = (−ih̄∇ + eA(r))2/2m∗ + V (x, y) (1)

where V (x, y) is the confinement potential—assumed zero
within the channels (white area in figure 1) and V0 = 200 meV
outside (the grey area in figure 1). The potential offset
V0 corresponds to channels made of GaAs embedded in an
Al0.45Ga0.55As matrix. In equation (1) −e is the electron
charge (e > 0) and m∗ = 0.067m0 is the GaAs electron band
effective mass.

Figure 1. Schematic drawing of the three-terminal ring. The
confinement potential is zero inside the channels and 200 meV
outside (grey area). The channel width is 68 nm; the inner and outer
radii of the ring are 88 nm and 154 nm, respectively. The channel
connected to the ring from below is the input lead.

2.2. Hamiltonian discretization

For the description of the stationary charge transport through
the system we need to determine the Hamiltonian (1)
eigenfunctions for the electron coming from the input channel.
We employ the finite difference approach with a square
computational box of side length 482 nm (see figure 1) on a
grid of 241 × 241 points with mesh spacings �x = �y =
2 nm. The results presented below are unaffected when one
enlarges the computational box to cover a larger part of the
input and the output channels. We use the Wilson [27] type
of discretization of the kinetic energy operator in a version
adapted by Governale and Ungarelli [28] for semiconductor
nanostructures. The discretization is consistent with the
original Hamiltonian (tends to it in the �x = 0 limit) and
gauge-invariant (accounts for the gauge transformation A →
A + ∇χ(r) inducing wavefunction phase change �(r) →
exp(− ie

h̄ χ(r))�(r)). The kinetic energy operator [28] acting
on a wavefunction defined on a mesh yields

1

2m∗ (p + eA)2�μ,ν = h̄2

2m∗�x2
(4�μ,ν − Cy�μ,ν−1

− C∗
y�μ,ν+1 − Cx�μ−1,ν − C∗

x�μ+1,ν), (2)

where �μ,ν = �(xμ, yν), Cy = exp[−i e
h̄�x Ay], and

Cx = exp[−i e
h̄�x Ax]. We apply the Lorentz gauge A =

(Ax, Ay, 0) = (0, Bx, 0), for which the mesh Hamiltonian
eigenequation reads

H�μ,ν = h̄2

2m∗�x2
(4�μ,ν − Cy�μ,ν−1 − C∗

y�μ,ν+1

− �μ−1,ν −�μ+1,ν)+ Vμ,ν�μ,ν = E�μ,ν. (3)

We find the energy E by solution of the boundary problem in
the incoming lead (see section 2.3), then equation (3) is solved
as a system of linear equations.
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2.3. Boundary conditions

The confinement potential in both the input and the output
channels depends only on the x coordinate. The chosen
gauge allows for separation of the x and y coordinates in the
Hamiltonian eigenfunctions

�(x, y) = exp(iky)ψk
n (x), (4)

with the wavevector k. In the absence of the magnetic field the
nth Hamiltonian eigenstate of a w = 68 nm wide channel has
the energy En = n2π2/2m∗w2 = 1.21n2 meV. We consider
the transport limited to the lowest n = 1 subband and skip
the subscript n in the following. Only the electrons with
wavevector exceeding k � 0.08 nm−1 have enough energy to
be scattered to higher subbands. We restrict our discussion
to lower values of k. According to the Landauer–Büttiker
approach [29] in the single subband transport the conductance
G is simply proportional to the transfer probability G = 2e2

h T .
We first determine the boundary conditions for the

incoming lead. We assume ν = 1 (lowest row of the mesh
in the computational box) and plug

�μ,ν±1 = exp(±ik�x)ψk
μ (5)

into equation (3) to obtain the one-dimensional eigenequation

h̄2

2m∗�x2
(2ψk

μ − ψk
μ−1 − ψk

μ+1)

+ h̄2

m∗�x2

(
1 − cos

(
k�x + e

h̄
Bx�x

))
ψk
μ

+ Vμψ
k
μ = Eψk

μ. (6)

Equation (6) provides the energy E that is used in the
main equation (3) as well as eigenfunctions corresponding to
incident (k > 0) and reflected (k < 0) electrons that are used
for setting the Dirichlet boundary condition for equation (3) at
the bottom of the computational box

�μ,ν=1 = ckψ
k
μ + c−kψ

−k
μ , (7)

where the amplitudes of the incident ck and reflected c−k

wavefunctions are determined in a manner described in
section 2.5.

Boundary condition (7) guarantees that the energy density
H�(x, y)/�(x, y) = E in the incoming lead and within
the ring as found from equation (3) are equal. In order to
match the energy density inside the ring the wavevectors in
the output channels (see equation (4)) in non-zero B must be
different from k. Within the channels the confinement potential
is zero, therefore equal energy density means equal kinetic
energy density. The kinetic energy operator is proportional
to the square of the kinetic momentum �2 = (p + eA)2 =
�2

x +�2
y = −h̄2 ∂2

∂x2 + (−ih̄ ∂
∂y + eBx)2. Since the input and

the output channels have the same width, the energy density is
matched for the wavevectors in the left kl and right kr output
leads related to the wavevector of the incoming lead k as
kl = k − eB

h̄ xl, and kr = k − eB
h̄ xr, where xl and xr are positions

of the axes of the left and right output leads (xr = −xl =

Figure 2. Probability density (lower panel) and probability density
current (upper panel) across the incoming lead for the incident
� |k|(x) and backscattered�−|k|(x) electron eigenfunctions for
|k| = 0.05 nm−1 at B = 1 T.

200 nm). Accordingly, for the boundary condition at the top of
the computational box we use

�μ,ν+1 = �μ,ν exp(ik ′�x), (8)

where k ′ = kl for x < 0 and k ′ = kr for x > 0. This
condition is introduced into equation (3) for the top end of the
computational box (ν = 241).

On the left and right edges of the computational box we
introduce an infinite potential barrier which amounts to putting
�μ−1,ν = 0 or �μ+1,ν = 0 in equation (3) for mesh points at
the left and right ends of the box, respectively.

2.4. Backscattering probability

The vertical component of the probability density current in the
incoming lead

j (x) = h̄

m∗ Im

(
�∗ ∂�

∂y

)
+ e

m∗ Ay, (9)

is a superposition j (x) = j k(x) + j−k(x) of the incident
current

j k(x) = h̄

m∗ |ck |2|ψk(x)|2(h̄k + eBx) (10)

and the backscattered one

j−k(x) = h̄

m∗ |c−k |2|ψ−k(x)|2(−h̄k + eBx). (11)

Figure 2 shows the probability density and probability
density current across the incoming lead for the incident (k)
and reflected (−k) waves for k = 0.05 nm−1 and B =
1 T. Probability densities are shifted from the axis of the
lead to the left with respect to the direction of the current
flow in consistence with the Lorentz force orientation. The
backscattering probability is evaluated as a ratio of the current
fluxes integrated across the input channel,

R =
∫

dx j−k(x)∫
dx j k(x)

. (12)

3



J. Phys.: Condens. Matter 22 (2010) 215801 M R Poniedziałek and B Szafran

Figure 3. The probability density in the incoming lead
ck�

k(x)+ c−k�
−k(x) in the initial guess ck = c−k and in the

subsequent iterations of the self-consistent procedure (see text).
Parameters are the same as in figure 2.

For the axis of the incoming lead x = 0, the solutions of
eigenequation (6) with opposite k are related as ψk(x) =
ψ−k(−x), which implies that (1) the backscattering probability
is simply

R =
∣∣∣∣c−k

ck

∣∣∣∣
2

, (13)

and (2) both the incident and reflected wavefunctions
correspond to the same average value of �2

y .
Solution of the system of equation (6) gives the

wavefunction in the entire system. Now our task is to extract
c±k , i.e. the contributions of the incident and backscattered
wavefunctions. For this purpose we consider two points in
the incoming lead near the bottom of the computational box.
We typically take two lowest points of the axis of the lead
(μ = 120, ν = 1) and (μ = 120, ν = 2); the results are not
affected by a specific choice of these points. The wavefunction
for ν = 1 is given by equation (7) and for ν = 2 we have

�k
μ,ν=2 = ckψ

k
μ exp(ik�x)+ c−kψ

−k
μ exp(−ik�x). (14)

The eigenfunctionsψk
μ, ψ−k

μ are determined from equation (6).
Formulae (7) and (14) form the system of equations for ck and
c−k .

2.5. Self-consistence for the amplitudes of the incident and
reflected wavefunctions

For non-zero B the Hamiltonian (6) depends on the sign of
the wavevector, and the eigenfunctions for ±k are different.
We need to assume some initial values for ck and c−k to set
the boundary condition (7) for the system of equation (3).
Solution of equation (3) gives the wavefunction in the entire
computational box, including the incoming lead, of which ck

and c−k can be extracted. The procedure to determine ck and
c−k is performed in a self-consistent iteration with ck = c−k =

1√
2

assumed as the initial guess. The iteration converges quite
fast. Figure 3 shows the charge density across the incoming
lead for k = 0.05 nm−1 at B = 1 T. The final result differs
considerably from the initial guess but the results of the second

Figure 4. Transfer probabilities to the left Tl and right Tr output
channels and their sum T as functions of the incident wavevector k
for B = 0 (a) and B = 0.8 T (b).

Figure 5. Zoom of a fragment of figure 4(b).

iteration only slightly differ from the first one. For parameters
applied in figure 3 the result for the backscattering probability
R = |c−k |2/|ck |2 converges from one (for the initial guess) to
0.021. Naturally, the iteration affects the results in the entire
computational box.

Note that by the initial guess ck = c−k one assumes
that the wavefunction in the incoming lead is symmetric with
respect to its axis. For non-zero B this is the case only when
backscattering probability reaches 100%.

2.6. Transfer probabilities to the left and right output channels

We need to separate the electron transfer probability to the left
Tl and right Tr leads of the total transfer probability T = 1− R.
For this purpose we calculate the probability currents in the
left and right output leads at the top of the computational box.
Formula (9) with the boundary condition (8) gives

jl(x) = h̄

m∗ |�(x, y ′)|2(h̄kl + eBx) (15)

4
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Figure 6. The red contours show the absolute value of the wavefunction (the darker the shade of red, the larger |�|) and probability current
field (arrows) for B = 0.8 T and several values of k indicated at the top of the figure. For the transfer probabilities see figure 5.

for the left lead, and

jr(x) = h̄

m∗ |�(x, y ′)|2(h̄kr + eBx) (16)

for the right one, where y ′ is the coordinate of the top of the
computational box. We integrate the current fluxes on the left
and right sides of the box Jl = ∫ 0

−120�x dx jl(x) and Jr =∫ 120�x
0 dx jr(x). The transfer probability to the left and right

channels is then calculated as Tl = T Jl
Jl+Jr

and Tr = T Jr
Jl+Jr

.

2.7. Time-dependent simulations

For the interpretation of the results it is useful to consider
also the solution of the time-dependent Schrödinger equation,
ih̄∂�/∂ t = H� . For the initial condition we use a Gaussian
wavefunction entirely localized in the input lead

�(x, y, t = 0) = �k1/2

(2π)1/4
ψk(x)e−�k2

4 (y−Y )2+Iqy, (17)

where Y lies far enough below the ring in the incoming lead.
Probability density of the initial condition in the wavevector
space is

|�(k)|2 = C exp(−2(k − q)2/�k2). (18)

The time-dependent calculations are performed using the
Crank–Nicolson scheme with a time step of 0.3 fs. We
use the finite difference Hamiltonian (3) with the same mesh
spacings as in the time-independent calculation, but with

Figure 7. (a) Transfer probabilities to the left Tl and right Tr output
channels and their sum T as functions of B for k = 0.0683 nm−1.
(b) The flux of the current through the left and the right arms of
the ring.

radically enlarged computational box. For the time-dependent
simulation the computational box that we use covers as
much as 12 μm of the input and the output channels. A
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Figure 8. The same as figure 7 but for k = 0.0667 nm−1.

computational box of this large size was necessary for setting
the initial condition for a nearly monoenergetic wavepacket.

2.8. Simulation of the temperature effects for broadening of
the transport window

In order to estimate the effects of non-zero temperature for
the transport we apply the linear response formula for the
conductance [30]

G = 2e2

h
T̄ , (19)

with

T̄ =
∫

T (E)

(
− ∂ f

∂E

)
dE, (20)

and the Fermi function f = (e(E−EF)/kBτ + 1)−1, where τ
stands here for the temperature. Formula (20) accounts for
averaging the transfer probability obtained in the Hamiltonian
eigenstates within the transport window that is opened near the
Fermi level by thermal excitations. In the integral over the
energy the wavevector k corresponding to a given E is found
from the eigenequation (6).

3. Results and discussion

3.1. Results for 0 K

Calculated transfer probabilities as functions of the wavevector
are presented in figure 4. For B = 0 one obtains Tl(k) =
Tr(k) due to the symmetry of the structure (figure 4(a)).
Non-zero magnetic field introduces asymmetry in the transfer
probabilities (figure 4(b)). Generally, at B > 0 one observes
that Tl is enhanced at the expense of Tr, which is consistent
with the orientation of the Lorentz force. Nevertheless, for

Figure 9. Zoom of two fragments of figure 8 corresponding to Tr

maxima. The solid lines show the transfer probabilities (left vertical
axis), and the dotted ones the normalized flux of the probability
density current through the left and right arms of the ring (right
vertical axis).

discrete values of k sharp dips of T appear at higher B
(figure 4(b)). The dips of T coincide with the minima of Tl

and peaks of Tr. A zoom of one of the T dips is shown in
figure 5. The amplitude of the wavefunction and probability
current distribution for k near the dip are displayed in figure 6.
For k = 0.057 nm−1 the electron is directed to the left arm
of the ring and then to the left output channel as previously
described by the time-dependent calculations [17–19]. For
k = 0.0577 nm−1 the current forms vortices in the left
arm and the actual electron transfer occurs through the right
arm of the ring. For k = 0.0577 nm−1 the current goes
through the right arm but the electron transfer to the right
lead still has low probability. For k = 0.0579 nm−1—at
the centre of the Tl dip (Tr peak)—the current forms a giant
counterclockwise vortex around the entire ring. A minimum
of the wavefunction amplitude is formed at the centre of the
entrance to the left output channel—similar to the one observed
for k = 0.0577 nm−1 at the right output channel. For larger k
the current starts to flow through the left arm again as guided
by the classical magnetic forces.

The magnetic forces influence the distribution of the
charge density within the ring. In figure 6 we observe a
distinct shift of the wavefunction amplitude with respect to
the axes of the channels correlated with the direction of the
current and consistent with the orientation of the Lorentz
force. For k = 0.057 nm−1 the wavefunction is distinctly
shifted to the left edge of the input and the output channels
as well as to the external edge of the left arm of the ring.
For k = 0.0577 nm−1, when the transfer of the current
through the left arm is blocked, the wavefunction maxima

6
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Figure 10. The contour plot shows the absolute value of the wavefunction (the darker the shade of red, the larger |�|) and probability current
field (arrows) for k = 0.0667 nm−1 and values of the magnetic field of figure 5(b).

between the input and left output lead are placed symmetrically
between the internal and external edges of the ring. For the
giant anticlockwise vortex found for k = 0.0579 nm−1 the
wavefunction is pushed to the inner edge of the ring.

In experiments the conductance is usually measured as a
function of the magnetic field. Figure 7(a) shows the transfer
probabilities as functions of B for k = 0.0683 nm−1. At low
B the maxima of T correspond to interlaced peaks of Tl and
Tr. At higher B the value of Tl increases on average and the
peaks of Tr become very narrow. Pronounced dips of Tl are
formed at the positions of Tr maxima. The peak/dip structure
occurs periodically with the spacings of �B = 0.09 T, which
corresponds to the flux quantum threading the one-dimensional
ring of an effective radius 121 nm that agrees well with the
geometry of the model structure (figure 1).

In order to quantify the direction of the current flow within
the ring we calculate the flux of the current at the horizontal
cross section of the arms of the ring y = 240 nm (see figure 1).
The fluxes are then normalized to obtain J 2

l + J 2
r = 1. In

figure 7(b) we notice that for larger B outside T dips nearly all
the current goes through the left arm of the ring.

Figure 8 corresponds to k = 0.0667 nm−1, for which
a maximum of T = 2Tl = 2Tr is found for B = 0 (see
figure 4(a)). At low B the peaks of Tl and Tr appear very
close to one another, forming a wider T maxima. For higher B
(i) the maxima of Tr turn into narrow peaks, which coincide

with the dips of Tl, and (ii) outside the T dips the current
flows up through the left arm of the ring while the current flux
through the right arm is close to zero, as discussed above for
k = 0.0683 nm−1.

Enlarged fragments of figure 8 corresponding to two
dips of Tl are shown in figure 9. The amplitude of the
wavefunction and the probability density current for the B
range of figure 9(b) are illustrated in figure 10. For B = 0.35 T
the transfer probability to the left lead is maximal, while Tr

is minimal. The current goes nearly entirely by the left arm.
Note the pronounced elongated minimum of the wavefunction
at the exit to the right output channel. This wavefunction
would be effectively coupled to the second subband of the right
channel, but the latter corresponds to a much higher energy, so
the transfer to the right lead is blocked. For B = 0.3536 T
a leakage of the current to the right lead is observed and Jr

becomes equal to Jl. For B = 0.3576 T the vortices of the
current appear in the left arm. The transfer of the current
through the left arm is nearly blocked. Note the position of
the sharp minimum of the wavefunction near the left output
lead marked by the blue line in figure 10. As B grows from
0.35 T the minimum is shifted to the left and for B = 0.3625 T
it is found at the centre of the junction of the left output
channel to the ring. For this value of the magnetic field Tl

becomes minimal. Generally in our simulations a minimum
of the wavefunction amplitude at the centre of the junction

7
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Figure 11. Parts of the wavepacket in the input and the output leads
as well as within the ring for q = 0.0667 nm−1 in the magnetic field
of B = 0.35 T (a) and 0.3625 T (b). In (c) the lines show the transfer
probabilities as functions of the magnetic field obtained by a
time-independent calculation in which the transfer probabilities are
averaged over the Gaussian distribution corresponding to the
wavepacket (equation (21)). The dots show the results of the
time-dependent calculation: the parts of the wavepacket that are
found in the output leads at the end of simulation for both B
considered in (a) and (b).

to the left output lead is found for all minima of Tl which
become sharp at higher B . When the electron transfer to the
left lead is blocked or hampered, the current goes to the right
output channel, leading to appearance of a maximum of Tr. For
B = 0.3625 T the current forms vortices in the left arm as well
as between the output leads, and the main electron transfer goes
through the right arm to the right output lead. For B = 0.39 T
the minimum of the wavefunction is shifted to the lower edge
of the left junction and the current transfer through the left arm
to the left output channel restarts.

For Jr > Jl the direction of the current circulation is
opposite to the one preferred by the Lorentz force. Intervals
of B corresponding to this orientation of the current become
narrow at higher field (see figures 7(b) and 8(b)). The magnetic
field interval for which Tr > Tl also becomes narrower at
higher field (see also figure 9).

In order to conclude this section we note that at
higher magnetic field the electron transfer goes predominantly
through the left arm of the ring to the left output lead, as should
be expected due to the orientation of the Lorentz force. For
narrow intervals of k or B , wavefunction interference within
the ring leads to formation of a wavefunction minimum at the
entrance to the left output channel, which blocks the transfer to
the left lead. The Tl minima are associated with reversal of the
current circulation and appearance of Tr maxima, which turn
into sharp peaks at higher B .

3.2. Wavepacket simulation

The results presented so far indicate that for some intervals of
the magnetic field the current flows in the opposite direction
to the one indicated by the Lorentz force. The results of the
wavepacket simulation for nearly definite values of the packet
wavevector should provide transfer probabilities close to the
ones found for the Hamiltonian eigenstates. However, by the
Ehrenfest theorem in the wavepacket dynamics the average
values of electron momentum and position follow classical
laws. Hence, for B > 0 a preferential injection of the
packet into the left arm of the ring is should be expected
for any magnetic field, in contrast to the anomalous current
injection that is found for Hamiltonian eigenstates for some
values of B . In order to inspect this contradiction more closely
we performed wavepacket simulations, in which we assume
�k = 5.5 × 10−4 nm (see equation (17)). This wavevector
dispersion for the studied structure and kF = 0.0667 nm−1

corresponds roughly to the thermal widening of the transport
window which occurs at 150 mK. The spatial spread of the
initial wavefunction is then as large as 4 μm, and we localize
the wavepacket Y = −8 μm below the ring in the initial
condition (equation (17)).

Figures 11(a) and (b) show the parts of the wavepacket
in the leads and within the ring for B = 0.35 and 0.3625 T.
In figure 11(b) we notice an enhanced packet transfer to the
right output lead in consistence with figure 9(b). Figure 12
shows the snapshots of the wavefunction amplitude and the
probability current distributions for B = 0.3625 T. When the
wavepacket enters the ring more of the electron wavefunction
goes into the left lead (t = 43.5 and 49.3 ps). At t = 70 ps an
elongated wavefunction minimum is found at the entrance to
the left lead. The current flow to the right output lead is visibly
enhanced. For t = 79 ps the part of the wavepacket inside
the ring is maximal and we find that both the wavefunction
amplitude and the current distributions are very close to those
found in the Hamiltonian eigenstate for k = 0.0667 nm (see
figure 10 for B = 0.3525 T).

Summarizing, in the time-dependent simulations with
a nearly monoenergetic wavepacket one first observes an
asymmetric injection of the packet to the arms of the ring
in accordance with the Lorentz force orientation. Next
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Figure 12. Snapshots of the time-dependent simulation for the average wavevector q = 0.0667 nm−1 and �k = 5.5 × 10−4 nm−1 (see
equation (17)) for chosen moments in time. The contour plots show the amplitude of the wavefunction and the arrows—the current
distribution. The colour scale for the amplitude is the same for all the plots. The scale for the current vectors is different in each plot.

the interference conditions similar to the ones found in the
Hamiltonian eigenstates are formed. For B = 0.3525 T the
interference blocks the electron transfer to the left lead.

The presented results of the wavepacket simulation were
obtained for an extremely low value of �k. The time-
dependent simulations are useful for observation of the
enhanced electron transfer to the right lead only for relatively
low values of B , before the Tr maxima turn into peaks as
sharp as in figure 8(a) for B = 0.8 T. The �k applied here
corresponds to roughly one-seventh of the length of horizontal
axis of figure 5, which greatly exceeds the width of the Tl dip.

In figure 11(c) we compared the transfer probabilities
estimated by the wavepacket simulation with the ones obtained
by the time-independent approach after calculating an average
over the wavepacket probability density in k space, i.e.

〈T 〉 = C
∫

dk T (k) exp(−2(k − q)2/�k2). (21)

Figure 11(c) shows that the results of the wavepacket
simulations are consistent with the k-vector averaged transfer
probability as calculated for Hamiltonian eigenstates.

3.3. Finite temperature effect

At high magnetic field the interference conditions leading
to anomalous injection of the current to the right arm of
the ring appear for narrow k intervals. The conductance

measurements are performed at finite temperatures of the order
of 100 mK [20, 31], for which a transport window of a finite
width is opened near the Fermi level. In order to study
the stability of these anomalous transport conditions at finite
temperatures, we performed calculations for averaged transfer
probabilities according to equation (20).

For the temperature τ = 115 mK the weight function
− ∂ f
∂E calculated for Fermi wavevector1kF = 0.0667 nm−1 is

nearly a Gaussian function of k centred at kF with half width
�k = 4.5×10−4 nm−1 for B = 0 and�k = 5.2×10−4 nm−1

for B = 0.8 T. In the B → ∞ limit the energy tends to
the lowest Landau level for any wavevector, E(k) → h̄ωc/2,
hence the widening of the k window for a given thermal energy
kbτ at higher B . For τ = 350 mK (700 mK) the corresponding
half widths are �k = 1.4 × 10−3 nm−1 (3 × 10−3 nm−1) and
�k = 1.6 × 10−3 nm−1 (3.5 × 10−3 nm−1), for B = 0 and
0.8 T, respectively.

Figure 13 shows the transfer probabilities and normalized
current fluxes for Fermi wavevector fixed at kF = 0.0667 nm−1

and three values of the temperature (results for 0 K were
given in figure 8). At finite temperature the dips and peaks
of the transfer probabilities are transformed into smooth
extrema of reduced amplitude, which eventually disappear
at high magnetic field. The attenuation of the Aharonov–
Bohm oscillations of the transfer probabilities for non-zero

1 In the present calculation the relation between the wavevectors and energy,
kF and EF in particular are given by equation (6).
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Figure 13. ((a), (c), (e)) Transfer probabilities to the left Tl and right output lead Tr as well as their sum T̄ averaged over the thermally
widened transport window for kF = 0.0667 nm−1. ((b), (d), (f)) Normalized current fluxes through the left and right arms of the ring. The
results are presented for the temperatures τ = 115 mK ((a), (b)) and 350 mK ((c), (d)) and 700 mK ((e), (f)).

temperatures at higher B is in agreement with the results
of previous wavepacket simulations [17–19], in which the
averaging of the transfer probabilities with k is embedded in
the initial condition. The attenuation was also observed in the
experimental data of [20]. Results of figure 13 indicate that the
oscillations of the direction of the current circulation around
the ring, which determine the orientation of the generated
magnetic dipole moment, are more thermally stable than the
oscillations of the transfer probabilities, which determine the
conductance.

3.4. Ring with a perturbed potential

The experimental results (figure 1 of [20]) indicate a significant
anisotropy of the potential landscape within the ring since
already at B = 0 the conductance of one of the output leads
greatly exceeds the other. The appearance of peaks of Tr at high
B > 0 that we discussed above were associated with specific
interference conditions for which the electron wavefunction at
the junction to the left output lead possessed a minimum at the
axis of the lead (see figure 10 for B = 0.3625 T for instance).
A question which seems natural is whether such interference
conditions are still possible for a quantum ring containing a
potential defect.

In order to answer this question we considered a
perturbation introduced by Gaussian potential Vd =
W exp(−[(x − xc)

2 + (y − yc)
2]/R2

d], centred at point xc =
−104.8 nm yc = 179.5 nm in the left arm just in between the
input and left output leads. The size of the defect is assumed to
be Rd = 30 nm. The results for the transfer probabilities and
current fluxes are displayed in figure 14.

For W = −5 meV the impurity introduces a potential
cavity which mainly shifts the phase of the wavefunction
passing through the left arm (figures 14(g) and (h)). We
observe no pronounced effect for the qualitative features of the
transfer probabilities at high magnetic field as compared to a
clean ring W = 0 case (cf. figure 8).

A potential barrier that is introduced for W > 0 hampers
the electron transfer through the left arm. For W � 4 meV the
transfer probabilities to the left and right output leads become
distinctly different near B = 0 (figures 14(c) and (e)), the
amplitude of the Aharonov–Bohm oscillation is significantly
reduced and the peak/dip structures disappear in the high field
limit.

Results of figure 14 for W = 4 and 5 meV resemble
the measured conductance [20]. Near B = 0 the electron
transfer goes mainly to the right lead. Tl exceeds Tr only
for B > 0.5 T. Note that also for B > 0.5 T the current
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Figure 14. The transfer probabilities and normalized current fluxes for a repulsive potential defect of height 3 meV ((a), (b)), 4 meV ((c), (d))
and 5 meV ((e), (f)). Plots (g), (h) correspond to an attractive defect of depth −5 meV.

flux through the right arm of the ring greatly exceeds the one
through the left arm (figures 14(d) and (f)). The dominant
electron trajectory for this transport conditions was indicated
in [19] using wavepacket simulations.

We conclude that the presence of a repulsive potential
defect induces not only the asymmetry of the transfer at B =
0 and a weak amplitude of the Aharonov–Bohm oscillation
but also the absence of Tr peaks at high B . For a strongly
asymmetric potential the peaks of Tr disappear also at zero
temperature.

3.5. Ring of an increased channel width

The above results were obtained for the width of the channel
within the ring fitted to the width of terminals. For an increased
width of the ring channel the electron coming from the lowest

subband of the input lead may possess enough energy to
occupy locally—i.e. within the ring—the second subband.
A local scattering to the second subband may influence the
mechanism of the electron transfer through the system. In
order to study this point we decreased the inner radius of the
ring from 88 to 68 nm (see the inset to figure 15).

The k-resolved transfer probabilities are plotted for B =
0.8 T in figure 15. For k < 0.06 nm we find similar results
to the ones presented above: the transfer goes to the left
output lead for nearly each value k. For k > 0.06 nm−1

the scattering to the second subband of the channel becomes
allowed and one observes a non-regular dependence of the
transfer probabilities, with Tr exceeding Tl in some intervals.
For k = 0.05 nm−1 (figure 15(b)) the transfer probabilities
change with the magnetic field in the same manner as for the
ring of smaller width. Very different results are obtained for
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Figure 15. (a) Wavevector resolved transfer probabilities to the left
and right output leads for the inner ring radius decreased from 88 nm
(grey circle in the inset) to 68 nm (the black circle inside the grey
one). Results for the ring channel width equal to the width of the lead
channels were presented in figure 4(b). Transfer probabilities as
functions of B are plotted for k = 0.05 nm−1 and 0.0667 nm−1 in (b)
and (c), respectively.

k = 0.0667 nm−1 (figure 15(c)). No sign of periodicity can
be noticed. The results seem chaotic, with no clear signature
of the Lorentz force effect. The results for k > 0.06 nm−1

resemble the transport through a chaotic cavity (quantum
billiard [32]) rather than through a quantum ring.

4. Summary and conclusions

We have discussed the role of magnetic forces in stationary
electron flow through a three-terminal quantum ring as
obtained for Hamiltonian eigenstates in a single subband
transport regime. We have shown that in most cases at high
magnetic field the transport seems governed by the magnetic
forces: the entire current is injected into the left (B > 0)
arm of the ring and then ejected to the left output lead, with
a transfer probability that tends to 100% at high magnetic
fields. Exceptions to this rule are found only for narrow
windows of magnetic fields for which interference conditions

within the ring lead to formation of wavefunctions which
are weakly coupled to the left output channel. This form
of interference is associated with anticlockwise circulation of
the current within the ring and with an appearance of narrow
peaks of transfer probabilities to the right output lead. The
anticlockwise circulation is anomalous from the point of view
of the direction of classical magnetic forces, since the current is
injected into the right and not the left arm of the ring. The sharp
peaks of the transfer probability to the right output lead that are
found for high B disappear at finite temperatures for which the
Aharonov–Bohm oscillations of conductance are eventually
attenuated. Oscillations of the current circulation turn out to
be more resistant to the thermal widening of the Fermi level
than the transfer probabilities. We have demonstrated that the
imbalance of the transfer probabilities at B = 0 as well as the
reduction of the conductance oscillations that are introduced
by a scattering centre within the ring are associated with
removal of the interference conditions leading to appearance
of the peaks of Tr at high magnetic field. We have considered
a ring with a width larger than the width of the channels.
We demonstrated that, for the wavevectors which allow for
appearance of local scattering to an excited subband within the
ring channel, the results for conductance become chaotic as a
function of B without a clear signature of either the Lorentz
force effect or the Aharonov–Bohm oscillations.
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